2nd Exam Calculus of Variations \& Optimal Control 2015-16

Datum	$:$	$08-04-2016$
Plaats	$:$	BB293
Tijd	$:$	$9.00-12.00$

You need to motivate all your answers and to mention clearly which theorems etc. you are using.

The exam is OPEN BOOK.

1. Consider the scalar system

$$
\dot{x}=-a x+u, \quad x(0)=x_{0}, \quad|u(t)| \leq M
$$

for a constant a and positive constant M, and cost criterion
$J(u)=\frac{1}{2} \int_{0}^{1} u^{2}(t) d t+x(1)$
(a) Determine the Hamiltonian for this optimal control problem, and the differential equation for the co-state p.
(b) What is the optimal input (as function of time) for the case $M=\infty$?
(c) What is the optimal input for finite M ? Distinguish between the case $a \geq 0$ and $a<0$.
2. Consider the differential equation describing a mathematical pendulum
$m R^{2} \ddot{\phi}(t)+g m R \sin (\phi(t))=u(t)$,
where ϕ is the angle with respect to the stable equilibrium state, $u(\cdot)$ is a torque exerted around the suspension point. As output we take the angular velocity; $y(t)=$.
The objective is to minimize the cost
$J_{\left[0, t_{\mathrm{e}}\right]}\left(x_{0}, u\right)=m R^{2} y\left(t_{\mathrm{e}}\right)^{2}-2 m g R \cos \left(\phi\left(t_{\mathrm{e}}\right)\right)+\int_{0}^{t_{\mathrm{e}}} y^{2}(t)+u^{2}(t) d t$.
We introduce the notation $x=\binom{x_{1}}{x_{2}}=\binom{\phi}{\dot{\phi}}$.
a. Determine the state differential equation.
b. Determine the Hamiltonian $H(p, x, u)$ and the differential equation for the co-state.
c. Calculate $\int_{0}^{t_{\mathrm{e}}} y(t) u(t) d t$. What do you see?
d. Give an expression for the value function.
e. Use Theorem 57 to find an expression for the co-state. Verify that it satisfies the differential equation you already found.
3. Consider a mass-spring system (q the elongation of the spring, $p=m \dot{q}$ the momentum of the mass)

$$
\begin{aligned}
\dot{q} & =\frac{1}{m} p \\
\dot{p} & =-k q+u
\end{aligned}
$$

with m the mass, $k>0$ the spring constant, and u the external force on the mass.
(a) Prove that the feedback $u=-\dot{q}$ renders the equilibrium $(q, p)=(0,0)$ asymptotically stable.
(b) In practice the magnitude of the input u is often constrained, say $|u| \leq M$ for some constant $M>0$. Define the function sgn by $\operatorname{sgn}(z)=1$ if $z>0, \operatorname{sgn}(z)=$ -1 if $z<0$, and $\operatorname{sgn}(0)=0$.
Show that in this case the equilibrium is still rendered asymptotically stable by the feedback

$$
\begin{aligned}
u & =-\dot{q}, & & \text { indien }|\dot{q}| \leq M \\
u & =-M \operatorname{sgn}(\dot{q}), & & \text { indien }|\dot{q}|>M
\end{aligned}
$$

using the Lyapunov function ($=$ total energy) $V(q, p)=\frac{1}{2 m} p^{2}+\frac{1}{2} k q^{2}$.
(c) Is $(0,0)$ a globally asymptotically stable equilibrium of the closed-loop system resulting from applying the feedback in (b) ?
4. Consider the problem of extremizing

$$
\int_{0}^{T}\left[\frac{1}{2} m \dot{q}^{2}(t)-V(q(t))\right] d t
$$

over all functions $q:[0, T] \rightarrow \mathbb{R}^{n}$ with $q(0)=q_{0}, q(T)=q_{T}$ fixed. Here $V: \mathbb{R}^{n} \rightarrow$ \mathbb{R} is an arbitrary differentiable function. Derive the Euler-Lagrange equation. (This corresponds to the motion of a particle with mass m in \mathbb{R}^{n} subject to a potential field with potential energy V.)
What is the Beltrami identity for this case? Give an interpretation.
Distribution of points: Total 100; Free 10

1. a: $5, \mathrm{~b}: 10, \mathrm{c}: 10$.
2. a: $5, \mathrm{~b}: 5, \mathrm{c}: 5, \mathrm{~d}: 10$, e: 5 .
3. a: 5, b: $10, \mathrm{c}: 10$.
4. 10
